Oxford A Level Sciences

AQA Chemistry

4 Energetics Answers to practice questions

Question number	Answer	Marks	Guidance
1 (a)	The enthalpy change / heat (energy) change (at constant pressure) in a reaction is independent of the route / path taken (and depends only on the initial and final states)	1	Ignore the use of <i>∆H</i> for enthalpy
1 (b)	$\Delta H_{exp} + \Delta H_2 - \Delta H_1 = 0$ OR $\Delta H_{exp} + \Delta H_2 = \Delta H_1 \text{ OR } \Delta H_1 = \Delta H_{exp} + \Delta H_2$ OR $\Delta H_{exp} = \Delta H_1 - \Delta H_2 \text{ OR } \Delta H_{exp} = \Delta H_1 + (-\Delta H_2)$	1	Any correct mathematical statement that uses all three terms
1 (c)	$\Delta H_{exp} = \Delta H_1 - \Delta H_2$ $\Delta H_{exp} = -156 - 12 = -168 \text{ kJ mol}^{-1}$ Award the mark for the correct answer without any working	1	Ignore units
1 (d) (i)	M1 $q = m c \Delta T$ OR calculation (25.0 × 4.18 × 14.0) M2 = 1463 J OR 1.46 kJ (This also scores M1) M3 must have both the correct value within the range specified and the minus sign For 0.0210 mol, therefore $\Delta H_1 = -69.67$ to -69.52 kJ mol ⁻¹ <i>OR</i> $\Delta H_1 = -69.7$ to -69.5 kJ mol ⁻¹ Accept answers to 3sf or 4sf in the range -69.7 to -69.5 Ignore -70 after correct answer	3	Award full marks for correct answer In M1, do not penalise incorrect cases in the formula Penalise M3 ONLY if correct numerical value but sign is incorrect; e.g. +69.5 to +69.7 gains 2 marks (ignore +70 after correct answer) Penalise M2 for arithmetic error but mark on $\Delta T = 287$, score $q = m c \Delta T$ only If c = 4.81 (leads to 1684 J) penalise M2 ONLY and mark on for M3 = - 80.17 (range - 80.0 to - 80.2) Ignore incorrect units
1 (d) (ii)	The idea of heat loss OR	1	NOT impurity NOT incompetence NOT incomplete combustion

Oxford A Level Sciences

AQA Chemistry

	Incomplete reaction (of the copper sulfate) <i>OR</i> Not all the copper sulfate has dissolved		
1 (e)	Impossible to add / react the exact / precise amount of water <i>OR</i> Very difficult to measure the temperature rise of a solid <i>OR</i> Difficult to prevent solid dissolving <i>OR</i> (Copper sulfate) solution will form	1	Not just "the reaction is incomplete"
2 (a)	$3N_2H_4 \rightarrow 4NH_3 + N_2$	1	Or multiples Ignore state symbols
2 (b)	 M1 enthalpy / heat (energy) change / required / needed to break / dissociate a covalent bond (or a specified covalent bond) M2 average / mean over different molecules / compounds / substances 	2	Ignore bond making Ignore standard conditions M2 requires an attempt at M1
2 (c)	M1 \sum (bonds broken) – \sum (bonds formed) = ΔH <i>OR</i> Sum of bonds broken – Sum of bonds formed = ΔH M2 (also scores M1) 4(+388) + 163 + 2(146) + 4(463) – 944 – 8(463) = ΔH OR broken +3859 (2007) formed – 4648 (2796) M3 ΔH = -789 kJ mol ⁻¹ Award 1 mark for +789 Students may use a cycle and gain full marks	3	M1 could stand alone Award full marks for correct answer Ignore units Two marks can score with an arithmetic error in the working Credit one mark only for calculating either the sum of the bonds broken or the sum of the bonds formed provided this is the only mark that is to be awarded

Oxford A Level Sciences

AQA Chemistry

4 Energetics Answers to practice questions

3 (a)	Heat (energy) change at constant pressure	1	Ignore references to standard conditions, but credit specified pressure.
3 (b)	The enthalpy change / heat (energy) change (at constant pressure) in a reaction is independent of the route / path taken (and depends only on the initial and final states)	1	
3 (c)	ΔH + 963 = -75 - 432 OR ΔH + 963 = - 507 (M1)	3	Award full marks for correct answer
	$\Delta H = -75 - 432 - 963$ (M1 and M2)		Ignore units.
	$\Delta H = -1470 \text{ kJ mol}^{-1}$		Ignore numbers on the cycle
	Award 1 mark for + 1470		M1 and M2 can score for an arithmetic error
4 (a)	enthalpy change / heat energy change when 1 mol of a substance	1	This definition is definitely worth learning. It is worth 3 marks.
	is completely burned in oxygen	1	
	at 298 K and 100 kPa or standard conditions	1	
4 (b)	$\Delta H = \Sigma$ (bonds broken) – Σ (bonds formed)	1	Always write down the general expression for bond energy
	= (6 × 412) + 612 + 348 + (4.5 × 496) - [(6 × 743) + (6 × 463)]	1	calculations as shown here in the first line.
	$= -1572 \text{ kJ mol}^{-1}$	1	
4 (c)	by definition $\Delta_{\mathbf{f}} H$ is formation from an element	1	
4 (d)	$\Delta_{c}H = \Sigma \Delta_{f}H$ (products) $-\Sigma \Delta_{f}H$ (reactants or cycle)	1	Always write the first line as shown here for enthalpy calculations.
	$= (3 \times -394) + (3 \times -242) - (+20)$	1	
	$= -1928 \text{ kJ mol}^{-1}$	1	
4 (e)	bond enthalpies are mean / average values	1	
	from a range of compounds	1	